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Abstract 
 

Recent studies suggest that the conditional CAPM holds, period-by-period, and that time-
variation in risk and expected returns can explain why the unconditional CAPM fails.  We argue, 
however, that variation in betas and the equity premium would have to be implausibly large to 
explain important asset-pricing anomalies like momentum and the value premium.  We also 
provide a simple new test of the conditional CAPM using direct estimates of conditional alphas 
and betas from short-window regressions, avoiding the need to specify conditioning information.  
The tests show that the conditional CAPM performs nearly as poorly as the unconditional 
CAPM, consistent with our analytical results. 

 
 
 
 



 

1. Introduction 

The unconditional CAPM does not describe the cross section of average stock returns.  Most 

prominently, the CAPM does not explain why, over the last forty years, small stocks outperform large 

stocks, why firms with high book-to-market (B/M) ratios outperform those with low B/M ratios (the 

‘value premium’), or why stocks with high prior returns during the past year continue to outperform those 

with low prior returns (‘momentum’).  In this paper, our goal is to understand whether a conditional 

version of the CAPM might explain these patterns. 

Theoretically, it is well known that the conditional CAPM could hold perfectly, period-by-period, 

even though stocks are mispriced by the unconditional CAPM (e.g., Jensen, 1968; Dybvig and Ross, 

1985; Jagannathan and Wang, 1996).  A stock’s conditional alpha (or pricing error) might be zero, when 

its unconditional alpha is not, if its beta changes through time and is correlated with the equity premium 

or with market volatility, as we discuss further below.  Put differently, the market portfolio might be 

conditionally mean-variance efficient in every period but, at the same time, not on the unconditional 

mean-variance efficient frontier (Hansen and Richard, 1987). 

Several recent studies argue that time-varying betas do, in fact, help explain the size and B/M 

effects.  Zhang (2005) develops a model in which high-B/M stocks are riskiest in recessions when the risk 

premium is high, leading to an unconditional value premium.  Jagannathan and Wang (1996), Lettau and 

Ludvigson (2001), Santos and Veronesi (2005), and Lustig and Van Nieuwerburgh (2005) show that the 

betas of small, high-B/M stocks vary over the business cycle in a way that, according to the authors, 

largely explains why those stocks have positive unconditional alphas.1 

 In this paper, we question whether the conditional CAPM can really explain asset-pricing 

anomalies, either in principle or in practice.  Our analysis has two components.  We argue, first, that if the 

conditional CAPM truly holds, we should expect to find only small deviations from the unconditional 

                                                      
1 These studies consider both the simple and consumption CAPMs, and we use ‘beta’ in this paragraph to refer to 

risk measured either way.  Our paper focuses on the simple CAPM but, as we explain later, the arguments apply to 
the consumption CAPM as well.  Other recent studies on the conditional CAPM include Wang (2003), Adrian and 
Franzoni (2005), Ang and Chen (2005), and Petkova and Zhang (2005). 
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CAPM – much smaller than those observed empirically.  Second, we provide direct empirical evidence 

that the conditional CAPM does not explain the B/M and momentum effects. 

The first point can be illustrated quite easily.  Suppose, for illustration only, that market volatility is 

constant.  If the conditional CAPM holds, we show that a stock’s unconditional alpha depends primarily 

on the covariance between its beta and the market risk premium, αu ≈ cov(βt, γt).  This implied alpha will 

typically be quite small.  For example, suppose that a stock’s monthly beta has a standard deviation of 

0.3, about our estimate for a long-short B/M strategy, and that the monthly risk premium has a standard 

deviation of 0.5%, large relative to its average (also around 0.5%).  Then, if the conditional CAPM holds, 

the stock’s unconditional alpha can be at most 0.15% monthly [cov(βt, γt) ≤ σβ σγ], an upper bound 

achieved only if βt and γt are perfectly correlated.  Empirically, the B/M strategy has an alpha of 0.59% 

monthly (std. error, 0.14%), and a momentum strategy has an alpha of 1.01% monthly (std. error, 0.28%), 

both substantially larger than our estimates for plausible alphas.2  In short, we argue that observed pricing 

errors are simply too large to be explained by time variation in beta. 

 The second part of the paper provides a simple new test of the conditional CAPM.  The test is 

based on direct estimates of conditional alphas and betas from short-window regressions.  For example, 

we estimate CAPM regressions every month, quarter, half-year, or year using daily, weekly, or monthly 

returns.  The literature has devoted much effort to developing tests of the conditional CAPM, but a 

problem common to all prior approaches is that they require the econometrician to know the ‘right’ state 

variables (e.g., Harvey, 1989; Shanken, 1990; Jagannathan and Wang, 1996; Lettau and Ludvigson, 

2001).  Cochrane (2001, p. 145) summarizes the issue this way:  “Models such as the CAPM imply a 

conditional linear factor model with respect to investors’ information sets.  The best we can hope to do is 

test implications conditioned on variables that we observe.  Thus, a conditional factor model is not 

testable!” (his emphasis).  Our methodology gets around this problem since it does not require any 

                                                      
2 The data are described later.  Briefly, the portfolios consist of all NYSE and Amex stocks on CRSP and 

Compustat from 1964 to 2001.  The B/M strategy invests in the top quintile and shorts the bottom quintile of firms 
ranked by B/M.  The momentum strategy invests in the top decile and shorts the bottom decile when stocks are 
ranked by past 6-month returns. 
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conditioning information.  As long as betas are relatively stable within a month or quarter, simple CAPM 

regressions estimated over a short window – using no conditioning variables – provide direct estimates of 

assets’ conditional alphas and betas. 

 Using the short-window regressions, we estimate time series of conditional alphas and betas for 

size, B/M, and momentum portfolios from 1964 – 2001.  The alpha estimates enable a direct test of the 

conditional CAPM:  average conditional alphas should be zero if the CAPM holds, but instead we find 

they are large, statistically significant, and generally close to the portfolios’ unconditional alphas.  The 

average conditional alpha is around 0.50% for our long-short B/M strategy and around 1.00% for our 

long-short momentum strategy (we say ‘around’ because we estimate alphas in several ways; all methods 

reject the conditional CAPM but their point estimates differ somewhat.)  The estimates are more than 

three standard errors from zero and close to the portfolios’ unconditional alphas, 0.59% and 1.01%, 

respectively.  We do not find a size effect in our data, with conditional and unconditional alphas both 

close to zero for the ‘small minus big’ strategy. 

 Our tests show that betas do vary considerably over time – just not enough to explain large 

unconditional pricing errors.  A nice feature of the short-window regressions is that they allow us to back 

out the volatility of true conditional betas.  Specifically, the variance of estimated betas should equal the 

variance of true betas plus the variance of sampling error, an estimate of which is provided by the short-

window regressions (see also Fama and French, 1997).  Using this relation, we estimate that beta has a 

standard deviation of roughly 0.30 for a ‘small minus big’ portfolio, 0.25 for a ‘value minus growth’ 

portfolio, and 0.60 for a ‘winner minus loser’ portfolio.  The betas fluctuate over time with variables 

commonly used to measure business conditions, including past market returns, Tbill rates, aggregate 

dividend yield, and the term spread.  However, we find no evidence that betas covary with the market risk 

premium in a way that might explain the portfolios’ unconditional alphas (indeed, the covariances often 

have the wrong sign). 

Overall, the evidence supports our analytical results.  Betas vary significantly over time but not 

enough to explain observed asset-pricing anomalies.  Although the short-horizon regressions allow betas 
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to vary without restriction from quarter-to-quarter and year-to-year, the conditional CAPM performs 

nearly as poorly as the unconditional CAPM. 

Our analysis focuses on the Sharpe-Lintner CAPM but the conclusions should apply to other 

models as well:  as a rule, time-variation in risk should have a relatively small impact on cross-sectional 

asset-pricing tests.  In intertemporal models, consumption betas and the consumption risk premium would 

need to vary enormously over time for a conditional model to significantly outperform an unconditional 

one.  While our empirical tests cannot be applied directly to the consumption CAPM, because they 

require high-frequency data, preliminary results using the mimicking-portfolio approach of Breeden, 

Gibbons, and Litzenberger (1989) provide no evidence that time-varying consumption betas explain 

momentum or the value premium (these results are available on request). 

Our conclusions counter those of Jagannathan and Wang (JW 1996), Lettau and Ludvigson (2001), 

Santos and Veronesi (2005), and Lustig and Van Nieuwerburgh (2005), who argue that conditioning is 

very important for asset-pricing tests.  The difference is that they focus on cross-sectional regressions, not 

time-series intercept tests, and ignore key restrictions on the cross-sectional slopes (which are automatic 

in our tests).  To illustrate, JW show that a one-factor conditional CAPM implies a two-factor 

unconditional model, E[Ri] = βi γ + λi, where Ri is the stock’s excess return, βi is the stock’s average beta, 

γ is the average risk premium, and λi measures how the stock’s beta covaries though time with the risk 

premium.  The four studies estimate this cross-sectional equation using various measures of βi and λi (or 

transformations thereof).  The key issue is that the cross-sectional slope on λi should be one if the 

conditional CAPM holds but that constraint isn’t imposed.  And our calculations suggest the actual 

estimates are much too large.  In essence, by ignoring the cross-sectional restrictions, the papers don’t 

provide a full test of the conditional CAPM. 

The paper is organized as follows.  Section 2 explores the impact of time-varying risk and expected 

returns on unconditional CAPM regressions.  Section 3 introduces the data and describes our testing 

approach.  Section 4 presents the main empirical results, and Section 5 discusses other papers which test 
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the conditional CAPM.  Section 6 concludes. 

 

2. The CAPM with time-varying betas 

 Asset-pricing tests often assume that betas are constant over time.  Such ‘unconditional’ tests may 

reject the CAPM even if it holds perfectly, period-by-period.  In this section, we derive expressions for a 

stock’s unconditional alpha and beta when expected returns, volatility, and covariances all change over 

time.  Our goal is to understand whether the pricing errors induced by time-varying betas might be large 

enough to explain important asset-pricing anomalies. 

 

2.1. Notation and assumptions 

Let Rit be the excess return on asset i and RMt be the excess return on the market portfolio.  The 

joint distribution of Rit and RMt can change over time without restriction, except that (i) it must have well-

defined conditional and unconditional moments, and (ii) the conditional CAPM is assumed to hold.  

Conditional moments for period t given information at t-1 are labeled with a t subscript:  the market’s 

conditional risk premium and standard deviation are γt and σt, and the stock’s conditional beta is βt.  The 

corresponding unconditional moments are denoted γ, σM, and βu.  The unconditional βu will generally 

differ from the expected conditional beta, denoted β ≡ E[βt]. 

 

2.2. Unconditional alphas and betas 

The conditional CAPM says that expected returns are proportional to conditional betas:  Et-1[Rit] = 

βt γt.  Taking unconditional expectations, this relation implies that E[Rit] = β γ + cov(βt, γt), as observed 

by Jagannathan and Wang (1996).  The asset’s unconditional alpha is defined as αu ≡ E[Rit] – βu γ, and 

substituting for E[Rit] yields: 

αu = γ (β – βu) + cov(βt, γt). (1) 

Under some conditions, discussed below, a stock’s unconditional and expected conditional betas will be 

similar, in which case αu is approximately equal to the covariance between beta and the market risk 
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premium.  More generally, the Appendix shows that 

 βu = β + ),cov(1])( ,cov[1),cov( 2
tt2
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This expression says that βu differs from the expected conditional beta if βt covaries with the market risk 

premium (2nd term), if it covaries with (γt – γ)2 (3rd term), or if it covaries with the conditional volatility 

of the market (last term).  Roughly speaking, movement in beta that is positively correlated with the 

market risk premium or with market volatility, γt or 
2
tσ , raises the unconditional covariance between Ri 

and RM (the other term is generally quite small, as we explain in a moment).  Substituting (2) into (1), the 

stock’s unconditional alpha is 
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Eq. (3) provides a very general formula for the unconditional pricing error.  It says that, even if the 

conditional CAPM holds exactly, we should expect to find deviations from the unconditional CAPM if 

beta covaries with γt, (γt – γ)2, or with conditional market volatility. 

 Fig. 1 illustrates these results for a scenario in which beta is positively correlated with the risk 

premium.  For simplicity, the graph assumes that βt and γt are bivariate normal and, conditional on these 

parameters, returns are normally distributed with constant volatility (the last terms in eqs. 2 and 3 drop 

out).  The dark curve shows E[Ri | RM], the predicted return on the stock as a function of the realized 

market return, while the light line shows the unconditional linear regression of Ri on RM. 

 The graph shows that, when beta and the risk premium move together, the relation between Ri and 

RM becomes convex because the slope tends to be high when the market return is high.  The true E[Ri | 

RM] goes through zero but a linear regression fitted to the data has a positive intercept – that is, the stock 

has a positive unconditional alpha.  [This is true unless the average risk premium is huge, shifting the 

graph so far to the right that the point where the line drops below the curve occurs at a positive RM; see 

eq. (3).]  The effects all reverse in sign if beta and the risk premium are negatively correlated:  the true 
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relation is concave and the unconditional alpha is negative.  The graph would also change if market 

volatility varied over time.  For example, if volatility is positively correlated with beta, the slope of the 

curve is high in both tails, inducing a cubic-like relation.  This effect would push up the stock’s 

unconditional beta (eq. 2) and push down its unconditional alpha (eq. 3). 

 

2.3. Magnitude 

 Our goal is to understand whether αu in eq. (3) might be large enough to explain observed 

anomalies.  We begin with a few observations to simplify the general formula.  Notice, first, that the 

market’s squared Sharpe ratio, γ2 / 2
Mσ  in the first term, is very small in monthly returns:  for example, 

using the CRSP value-weighted index from 1964 – 2001, γ = 0.47% and σM = 4.5%, so the squared 

Sharpe ratio is 0.011.  Further, the quadratic (γt – γ)2, in the second term, is also quite small for plausible 

parameter values:  if γ equals 0.5% and γt varies between, say, 0.0% and 1.0%, the quadratic is at most 

0.0052 = 0.000025.  Plugging a variable this small into the second term would have a negligible effect on 

E[Ri | RM]
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Figure 1. The unconditional relation between Ri and RM. 
The figure shows the excess return on stock i predicted as a function of the excess market return.  The dark line 
shows the true E[Ri | RM] and the thin line shows the unconditional linear regression of Ri on RM.  Returns are 
conditionally normally distributed, with constant volatility, and the CAPM holds period-by-period.  Beta and the 
expected risk premium are perfectly positively correlated. 
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alpha.  These observations suggest the following approximation for αu:3 

 αu ≈ ),cov(),cov( 2
tt2

M
tt σβ

σ
γ

−γβ . (4) 

Eq. (4) says that, when the conditional CAPM holds, a stock’s unconditional alpha depends primarily on 

how βt covaries with the market risk premium and with market volatility. 

 To explore the magnitude of eq. (4), it is useful to consider the simplest case when βt covaries only 

with the market risk premium:  αu ≈ cov(βt, γt) = ρ σβ σγ, where σ denotes a standard deviation and ρ is 

the correlation between βt and γt.  Table 1 reports the αu implied by various combinations of ρ, σβ, and σγ.  

The parameters are chosen as follows: 

• We consider three values for σβ – 0.3, 0.5, and 0.7 – which probably span or, more likely exceed, 

standard deviations encountered in practice.  Note, for example, that if β = 1.0 and σβ = 0.5, a two-

standard-deviation interval for beta extends all the way from 0.0 to 2.0.  In comparison, Fama and 

French (1992) estimate unconditional betas for beta-sorted decile portfolios and find a minimum of 

0.79 and a maximum of 1.73.  Further, we estimate later that size, B/M, and momentum portfolios 

have σβ’s between 0.25 and 0.60, while Fama and French (1997) estimate that 48 industry portfolios 

have σβ’s between 0.12 and 0.42. 

• We consider five values for σγ ranging from 0.1% to 0.5% monthly.  The average risk premium from 

1964 – 2001 is 0.47%, using the CRSP value-weighted index, so a standard deviation as high as 0.5% 

implies very large changes in the risk premium relative to its mean (a two-standard-deviation interval 

extends from –6% to 18% annualized).  For additional perspective, a simple OLS regression of NYSE 

returns on log dividend yield suggests that σγ = 0.3% from 1946 – 2000 (Lewellen, 2004), while the 

calibrations of Campbell and Cochrane (1999) produce a standard deviation between 0.4% and 0.5% 

monthly (using statistics in their Tables 2 and 5). 

                                                      
3 The approximation becomes perfect as the return interval shrinks because γ2 and (γt – γ)2 go to zero more 

quickly than the other terms in eq. (3).  We thank John Campbell for this observation. 
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• Finally, we consider two values for ρ, 0.6 and 1.0.  The first correlation is chosen arbitrarily; the 

second provides an upper bound for the pricing error. 

The key result in Table 1 is that unconditional alphas are generally small relative to observed anomalies.  

The alphas are typically less than 0.20%, with a maximum of 0.35% for our most extreme combination of 

parameters (which we regard as quite generous).  We estimate later that a long-short B/M strategy has σβ 

= 0.25, so Table 1 suggests that time-variation in beta can explain an unconditional alpha of at most 

0.15% monthly, small in comparison to our empirical estimate of 0.59% (std. error, 0.14%).  The same is 

true of a momentum strategy, for which we estimate an unconditional alpha of 1.01% and a σβ of 0.60.  

The bottom line is that, for reasonable parameters, the pricing error induced by time-variation in beta 

seems far too small to explain important asset-pricing anomalies. 

 Our analysis extends easily to cases in which beta covaries with market volatility as well as the risk 

premium.  In fact, time-varying volatility might well strengthen our conclusions:  eq. (4) shows that 

unconditional alphas are increasing in cov(βt, γt) but decreasing in cov(βt, 2
tσ ).  Thus, if the risk premium 

and volatility move together, the impact of time-varying volatility would tend to offset the impact of the 

risk premium, making implied αus even smaller.  The connection between γt and 2
tσ  is difficult to 

estimate, since returns are so noisy, but there is strong indirect evidence that the relation is positive 

Table 1 
Implied deviations from the unconditional CAPM 
The table reports unconditional alphas (% monthly) implied by the conditional CAPM for various assumptions about time-
variation in beta (βt) and the market risk premium (γt).  σβ is the standard deviation of βt, σγ is the standard deviation of γt, 
and ρ is the correlation between βt and γt.  Market volatility and βt are assumed to be uncorrelated. 

ρ = 0.6 σβ  ρ = 1.0 σβ 

  0.3 0.5 0.7   0.3 0.5 0.7

  Unconditional alpha (%)  Unconditional alpha (%) 
σγ  = 0.1 0.02 0.03 0.04  σγ  = 0.1 0.03 0.05 0.07

 0.2 0.04 0.06 0.08   0.2 0.06 0.10 0.14
 0.3 0.05 0.09 0.12   0.3 0.09 0.15 0.21
 0.4 0.07 0.12 0.17   0.4 0.12 0.20 0.28
 0.5 0.09 0.15 0.21   0.5 0.15 0.25 0.35
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(French, Schwert, and Stambaugh, 1987; Campbell and Hentschel, 1992; Ghysels, Santa-Clara, and 

Valkanov, 2004).  Many asset-pricing theories also predict that volatility and the equity premium move 

together over time, including Merton (1980) and Campbell and Cochrane (1999).4  We skip a detailed 

calibration with time-varying volatility, in the interest of brevity, but our later empirical results show that 

changes in volatility have only a small impact on unconditional alphas.  In short, with or without time-

varying volatility, αu seems too small to explain significant asset-pricing anomalies. 

 

3. Testing the conditional CAPM 

 We believe the conclusions above are quite robust, but the calibration relies, in part, on our view of 

reasonable parameter values.  In the remainder of the paper, we estimate some of the parameters and 

provide a simple direct test of the conditional CAPM. 

 
3.1. Methodology 

 The basic framework for our tests is standard.  We focus on time-series CAPM regressions for a 

handful of stock portfolios: 

 Rit = αi + βi RMt + εit, (5) 

where Rit is the excess return on portfolio i and RMt is the excess return on the market.  The CAPM 

predicts, of course, that αi is zero.  For unconditional tests, we estimate (5) using the full time series of 

returns for each portfolio, restricting αi and βi to be constant.  For conditional tests, a common approach 

(e.g., Shanken, 1990; Ferson and Schadt, 1996; Lettau and Ludvigson, 2001) is to model betas as a 

function of observed macroeconomic variables.  However, these tests, and alternatives suggested in the 

literature, are strictly valid only if the econometrician knows the full set of state variables available to 

investors (see Cochrane, 2001, for a review). 

                                                      
4 Merton models the risk premium as γt ≈ φ σt

2, where φ is aggregate relative risk aversion.  Given this relation, αu 
in eq. (4) is very close to zero because the impact of time-varying volatility almost perfectly offsets the impact of a 
time-varying risk premium.  In Campbell and Cochrane’s model, γt and σt are both decreasing functions of the 
surplus consumption ratio but volatility moves less than the risk premium (see Lettau and Ludvigson, 2003); thus, 
the effects of time-varying γt and σt only partially offset. 
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We propose a simple way to get around this problem:  we directly estimate conditional alphas and 

betas using short-window regressions.  That is, rather than estimate (5) once using the full time series of 

returns, we estimate it separately every, say, quarter using daily or weekly returns.  The result is a direct 

estimate of each quarter’s conditional alpha and beta – without using any state variables or making any 

assumption about quarter-to-quarter variation in beta.  We use the time series of alpha and beta estimates 

to test the conditional CAPM in two ways.  Our main test simply asks whether average conditional alphas 

are zero.  In addition, we test whether betas vary over time in a way that might explain stocks’ uncondi-

tional alphas, via the mechanisms discussed in Section 2:  do betas covary with the market risk premium 

or market volatility?  For robustness, we estimate regressions over a variety of interval lengths – monthly, 

quarterly, semiannually, and yearly – and using daily, weekly, or monthly returns. 

The key assumption underlying our tests is that beta is fairly stable during the month or quarter, so 

each short-window regression can treat it as constant.  The idea is that, if beta is constant during the 

quarter, a simple OLS regression Rit = αi + βi RMt + εit should produce an unbiased estimate of the true 

conditional alpha and beta.  And that’s all our tests require.  Each regression uses a small number of 

observations and produces a noisy estimate of the parameters, but our tests have reasonable power 

because they use a long time series of estimates. 

The assumption that beta is stable within a month or quarter seems fairly mild.  Empirical tests 

often assume beta is stable for five or more years, and studies that model beta as a function of 

macroeconomic variables typically use very persistent series, like Tbill rates and dividend yield, implying 

that betas also change quite slowly.  Moreover, we doubt that high frequency changes in beta, if they do 

exist, would affect the results significantly.  The impact of, say, daily changes in beta on quarterly 

regressions parallels the impact of time-varying betas on unconditional regressions, except that now only 

intraquarter variation (i.e., changes missed by the short-horizon regressions) is important.  We argued in 

Section 2 that ignoring all variation in beta has little impact on asset-pricing tests.  The point obviously 

has greater force once we account for a significant portion of time-varying betas via the short-window 

regressions:  betas, market volatility, and the risk premium would have to show incredibly large variation 
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within the quarter – and would have to covary strongly with each other – in order to explain the pricing 

errors from our short-window regressions.  The Appendix explores these ideas more fully.  Simulations in 

which risk and expected returns change daily or weekly suggest that our short-window regressions 

capture nearly all of the impact of time-varying betas (i.e., our short-window alpha estimates are close to 

zero, on average, if the conditional CAPM truly holds). 

 

3.2. Microstructure issues 

 While most asset-pricing studies use monthly returns, we use daily or weekly returns since the 

regressions are estimated over such short intervals.  Doing so raises two concerns.  First, alphas and betas 

for different return horizons should differ slightly because of compounding (Levhari and Levy, 1977; 

Handa, Kothari, and Wasley, 1989).  For example, if daily returns are IID, then expected N-day returns 

are E[1+Ri]N – 1 and the N-day beta is 

 N2
M

N2
M

N
M

N
i

N
Mi

i ]R1[E   ])R1[(E
]R1[E]R1[E   )]R1)(R1[(E)N(

+−+
++−++

=β . (6) 

From (6), it can be shown that betas spread out as the horizon lengthens:  βi(N) increases in N if βi(1) > 1 

but decreases in N if βi(1) < 1.  In addition, if the CAPM holds for daily returns, a stock with βi(1) > 1 

will have N-day alphas that are negative, while the opposite is true if βi(1) < 1.  Fortunately, these effects 

are tiny and can be ignored in the remainder of the paper.  For example, if the market return has mean 

0.5% and standard deviation 5% monthly, then a stock with a daily beta of 1.300 would have a monthly 

beta of 1.302 and a monthly alpha of –0.001%. 

 Second, and more important, nonsynchronous price movements can have a big impact on short-

horizon betas.  Lo and MacKinlay (1990) show that small stocks tend to react with a week or more delay 

to common news, so a daily or weekly beta will miss much of the small-stock covariance with market 

returns.  To mitigate the problem, our tests focus on value-weighted portfolios and exclude NASDAQ 

stocks.  Also, following Dimson (1979), we include both current and lagged market returns in the 

regressions, estimating beta as the sum of the slopes on all lags (alpha is still just the intercept).  For daily 
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returns, we include four lags of market returns, imposing the constraint that lags 2 – 4 have the same 

slope to reduce the number of parameters: 

 Ri,t = αi + βi0 RM,t + βi1 RM,t-1 + βi2 [(RM,t-2 + RM,t-3 + RM,t-4)/3] + εi,t. (7) 

The daily beta is then βi = βi0 + βi1 + βi2.  (Adding a few more lags doesn’t affect the results.)  For weekly 

returns, we include two lags of market returns: 

 Ri,t = αi + βi0 RM,t + βi1 RM,t-1 + βi2 RM,t-2 + εi,t, (8) 

where the weekly beta is again βi = βi0 + βi1 + βi2.  To increase precision, we estimate (8) using overlap-

ping returns (i.e., consecutive observations overlap by four days).  Finally, we estimate monthly betas 

including one lag of market returns: 

 Ri,t = αi + βi0 RM,t + βi1 RM,t-1 + εi,t, (9) 

where the monthly beta is βi = βi0 + βi1.  As discussed below, Dimson betas are not a perfect solution but 

our results do not seem to be driven by measurement problems.  Indeed, unconditional alphas estimated 

by (7) – (9) are nearly identical for our test portfolios. 

 
3.3. The data 

The empirical tests focus on size, B/M, and momentum portfolios from July 1964 – June 2001.  

Prices and returns come from the CRSP daily stock file and book values come from Compustat.  As we 

mentioned above, the portfolios are value-weighted and contain only NYSE and Amex common stocks.  

Our market proxy is the CRSP value-weighted index (all stocks), and we calculate excess returns on all 

portfolios net of the one-month T-bill rate. 

The size and B/M portfolios are similar to those of Fama and French (1993).  In June of every year, 

we form 25 size-B/M portfolios based on the intersection of five size and five B/M portfolios, with 

breakpoints given by NYSE quintiles.  Size is the market value of equity at the end of June, while B/M is 

the ratio of book equity in the prior fiscal year (common equity plus balance sheet deferred taxes) to 

market equity at the end of December.  Our tests are then based on six combinations of the 25 size-B/M 
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portfolios:  ‘Small’ is the average of the five portfolios in the lowest size quintile, ‘Big’ is the average of 

the five portfolios in the highest size quintile, and ‘S-B’ is their difference.  Similarly, ‘Growth’ is the 

average of the five portfolios in the low-B/M quintile, ‘Value’ is the average of the five portfolios in the 

high-B/M quintile, and ‘V-G’ is their difference.  Our ‘S-B’ and ‘V-G’ portfolios are much like Fama and 

French’s SMB and HML factors except that we exclude NASDAQ stocks and start with 25 basis 

portfolios (rather than six). 

The momentum portfolios are constructed separately using all stocks on CRSP with the required 

data (i.e., not restricted to Compustat firms).  We sort stocks every month into deciles based on past 6-

month returns and hold the stocks for overlapping 6-month periods, as in Jegadeesh and Titman (1993).  

This means, in effect, that one-sixth of the momentum portfolio is rebalanced every month.  Again, the 

tests focus on a subset of the 10 portfolios:  ‘Losers’ is the return on the bottom decile, ‘Winners’ is the 

return of the top decile, and ‘W-L’ is their difference. 

The tests use daily, weekly, and monthly returns.  ‘Weekly’ returns are calculated by compounding 

daily returns over five-day intervals rather than calendar weeks.  We use five-day windows in part 

because they are easier to align with calendar quarters and in part because the changing number of trading 

days in a week (sometimes as few as three) would complicate some of the tests.  Monthly returns are 

calculated in the standard way, compounding within calendar months.  For long-short strategies, we 

compound each side of the strategy and then difference. 

To set the stage, Table 2 reports summary statistics for the portfolios from 1964 – 2001.  Panel A 

shows average daily, weekly, and monthly excess returns.  The estimates are all expressed in percent 

monthly; the daily estimates are multiplied by 21 (trading days per month) and the weekly estimates are 

multiplied by 21/5.  Excess returns exhibit the usual cross-sectional patterns:  small stocks outperform 

large stocks (0.71% vs. 0.50% using monthly returns), high-B/M stocks outperform low-B/M stocks 

(0.88% vs. 0.41%), and winners outperform losers (0.91% vs. 0.01%).  Estimates of average returns are 

always lowest using daily returns and highest using monthly returns.  A very small portion of this pattern 

could be attributed to compounding, but it more likely reflects positive autocorrelation in daily returns.  
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Specifically, monthly expected returns are μmon = E[∏i(1+Ri)] – 1.  If daily returns are IID, the right-hand 

side becomes (1 + μday)21 – 1, essentially identical to 21 × μday.  But notice that the monthly expected 

return is higher if daily returns are positively autocorrelated since the expectation would have additional 

covariance terms.  This observation is consistent with the fact that average daily and monthly returns are 

Table 2 
Summary statistics for size, B/M, and momentum portfolios, 1964 – 2001 
The table reports average returns and unconditional CAPM regressions for size, B/M, and momentum portfolios.  The 
regressions use daily, weekly, or monthly returns, correcting for nonsynchronous trading as described in the text.  Average 
returns and alphas are expressed in percent monthly; the daily estimates are multiplied by 21 and the weekly estimates are 
multiplied by 21/5.  The portfolios are formed from all NYSE and Amex stocks on CRSP / Compustat.  We begin with 25 
size-B/M portfolios (5×5 sort, breakpoints determined by NYSE quintiles) and 10 return-sorted portfolios, all value 
weighted. ‘Small’ is the average of the five low-market-cap portfolios, ‘Big’ is the average of the five high-market-cap 
portfolios, and ‘S-B’ is their difference.  Similarly, ‘Growth’ is the average of the five low-B/M portfolios, ‘Value’ is the 
average of the five high-B/M portfolios, and ‘V-G’ is their difference.  Return-sorted portfolios are formed based on past 
6-month returns.  ‘Losers’ is the bottom decile, ‘Winners’ is the top decile, and ‘W-L’ is their difference. 

  Size  B/M  Momentum 
  Small Big S-B Grwth Value V-G Losers Winrs W-L

Panel A: Excess returns 
Avg. Day 0.57 0.49 0.08  0.32 0.81 0.49  -0.10 0.87 0.97
 Week 0.63 0.50 0.13 0.37 0.84 0.47 -0.04 0.91 0.95
 Month 0.71 0.50 0.21 0.41 0.88 0.47 0.01 0.91 0.90

Std error Day 0.28 0.20 0.19 0.27 0.23 0.13 0.33 0.28 0.26
 Week 0.26 0.18 0.18 0.26 0.22 0.12 0.30 0.26 0.25
 Month 0.34 0.19 0.23 0.30 0.26 0.16 0.35 0.28 0.27
      
Panel B: Unconditional alphas 
Est. Day 0.09 0.10 -0.01 -0.21 0.39 0.60 -0.64 0.35 0.99
 Week 0.05 0.10 -0.05 -0.22 0.37 0.59 -0.66 0.37 1.03
 Month 0.07 0.11 -0.03 -0.20 0.39 0.59 -0.63 0.38 1.01

Std error Day 0.15 0.06 0.17 0.10 0.12 0.12 0.18 0.13 0.26
 Week 0.14 0.06 0.16 0.09 0.11 0.11 0.17 0.12 0.25
 Month 0.18 0.07 0.20 0.11 0.13 0.14 0.19 0.13 0.28
      
Panel C: Unconditional betas 
Est. Day 1.07 0.87 0.20 1.18 0.94 -0.25 1.22 1.17 -0.06
 Week 1.25 0.86 0.39 1.27 1.03 -0.24 1.33 1.16 -0.17
 Month 1.34 0.83 0.51 1.30 1.05 -0.25 1.36 1.14 -0.22

Std error Day 0.03 0.01 0.03 0.02 0.03 0.02 0.03 0.02 0.05
 Week 0.03 0.01 0.04 0.02 0.03 0.03 0.04 0.03 0.06
 Month 0.05 0.02 0.06  0.03 0.04 0.04  0.06 0.04 0.08
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most different for small stocks. 

Panel B shows unconditional alphas for the portfolios (% monthly).  The estimates are remarkably 

similar for the three return horizons.  Focusing on the long-short portfolios, S-B has a daily alpha of –

0.01% and a monthly alpha of –0.03%, V-G has a daily alpha of 0.60% and a monthly alpha of 0.59%, 

and W-L has a daily alpha of 0.99% and a monthly alpha of 1.01%.  Thus, after adjusting for risk, the size 

effect is absent in our data but the B/M and momentum effects are strong.  Using monthly returns, the 

latter two are about 4 standard errors from zero. 

The contrast between Panels A and B is interesting:  excess returns increase with the return horizon 

but alphas do not.  Panel C shows why:  betas increase, roughly speaking, at the same rate as excess 

returns, so the net effect is that alphas (αi = E[Ri] – βi E[RM]) are nearly constant across horizons.  As a 

result, nonsynchronous prices have important effects on excess returns and betas, especially for small 

stocks, but little impact on CAPM tests for any of our portfolios. 

 

4. Empirical results 

 We now turn to the main empirical results.  As discussed above, we provide both a direct test of the 

conditional CAPM – are conditional alphas zero? – and an indirect test based on the time-series properties 

of beta.  The volatility, persistence, and cyclical behavior of betas should be of interest beyond their 

implications for the CAPM (see, e.g., Franzoni, 2002). 

 The main inputs for the empirical tests are the time series of conditional alpha and beta estimates 

from the short-window regressions (see Section 3.1).  We have explored a variety of window lengths and 

return horizons and report results for short-window regressions estimated several ways:  (i) quarterly 

using daily returns; (ii) semiannually using both daily (Semiannual 1) and weekly (Semiannual 2) returns; 

and (iii) annually using monthly returns.  The estimates are corrected for nonsynchronous trading using 

the methodology described in Section 3.2. 
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4.1. Conditional alphas 

The most basic test of the conditional CAPM is whether conditional alphas are zero.  Unlike prior 

studies, we can test this hypothesis without using any state variables because each quarterly or semiannual 

regression produces a direct estimate of a portfolio’s conditional alpha.  Our tests focus on the average 

conditional alpha for each portfolio, using the time-series variability of the estimates to obtain standard 

errors (in the spirit of Fama and MacBeth, 1973). 

The average conditional alphas, in Table 3, provide strong evidence against the conditional CAPM.  

Most important, B/M and momentum portfolios’ alphas remain large, statistically significant, and close to 

the unconditional estimates.  Depending on the estimation method, V-G’s average conditional alpha is 

between 0.47% and 0.53% (t-statistics of 3.05 to 3.65), compared with an unconditional alpha around 

0.59%.  W-L’s average alpha shows more dispersion, ranging from 0.77% to 1.37% for the different 

estimation methods (t-statistics of 2.66 to 5.12), but the estimates are in line with an unconditional alpha 

of about 1.00%.  The size effect continues to be weak, as in unconditional tests, but small stocks show a 

hint of abnormal returns in quarterly regressions.  Overall, the conditional CAPM performs about as 

poorly as the unconditional CAPM. 

The close correspondence between conditional and unconditional alphas supports our analytical 

results in Section 2, i.e., that time-varying betas should have a small impact on asset-pricing tests.  The 

short-window regressions allow betas to vary without restriction from quarter-to-quarter or year-to-year, 

and we show later that betas do, in fact, vary significantly over time.  Yet compared with unconditional 

tests, the alpha for the long-short B/M strategy drops by only about 0.10%, from 0.60% to 0.50%, and the 

alpha for the momentum strategy stays close to 1.00%.  Thus, time-variation in beta has only a small 

impact on measures of CAPM pricing errors. 

A couple features of Table 3 deserve highlighting.  First, recall that the standard errors aren’t taken 

directly from the short-window regressions but are based instead on the sample variability of the conditi-

onal alphas (e.g., the standard deviation of the 148 quarterly estimates divided by the square root of 148).  

The tests are therefore robust to both heteroskedasticity, which doesn’t affect the standard error of a sam-
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ple average, and autocorrelation, which shouldn’t exist (in alphas) if the conditional CAPM holds because 

every alpha estimate should have a conditional mean of zero. 

Second, our short-window regressions ignore high frequency changes in beta, but we doubt that 

such changes affect the results significantly.  As noted earlier, daily changes in beta are a concern only if 

they are very large and covary strongly with high frequency changes in the risk premium or volatility.  

Indeed, betas, volatility, and the risk premium would have to exhibit enormous variation within the 

quarter – much more than they show across quarters – in order to explain the pricing errors from our 

short-window regressions.  The Appendix explores these issues more fully.  Simulations in which betas 

change daily or weekly, and otherwise calibrated to the data, suggest that our short-window regressions 

capture nearly all of the impact of time-varying betas. 

Table 3 
Average conditional alphas, 1964 – 2001 
The table reports average conditional alphas for size, B/M, and momentum portfolios (% monthly).  Alphas are estimated 
quarterly using daily returns, semiannually using daily and weekly returns, and annually using monthly returns.  The 
portfolios are formed from all NYSE and Amex stocks on CRSP / Compustat.  We begin with 25 size-B/M portfolios (5×5 
sort, breakpoints determined by NYSE quintiles) and 10 return-sorted portfolios, all value weighted. ‘Small’ is the average 
of the five low-market-cap portfolios, ‘Big’ is the average of the five high-market-cap portfolios, and ‘S-B’ is their 
difference.  Similarly, ‘Growth’ is the average of the five low-B/M portfolios, ‘Value’ is the average of the five high-B/M 
portfolios, and ‘V-G’ is their difference.  Return-sorted portfolios are formed based on past 6-month returns.  ‘Losers’ is 
the bottom decile, ‘Winners’ is the top decile, and ‘W-L’ is their difference.  Bold denotes estimates greater than two 
standard errors from zero. 

 Size  B/M  Momentum 

 Small Big S-B Grwth Value V-G Losers Winrs W-L

Average conditional alpha (%) 
Quarterly  0.42 0.00 0.42 -0.01 0.49 0.50 -0.79 0.55 1.33
Semiannual 1 0.26 0.00 0.26 -0.08 0.40 0.47 -0.61 0.39 0.99
Semiannual 2 0.16 0.01 0.15 -0.12 0.36 0.48 -0.83 0.53 1.37
Annual -0.06 0.08 -0.14 -0.20 0.32 0.53 -0.56 0.21 0.77
    
Standard error 

Quarterly 0.20 0.06 0.22  0.12 0.14 0.14  0.20 0.13 0.26
Semiannual 1 0.21 0.06 0.23  0.12 0.14 0.15  0.19 0.14 0.25
Semiannual 2 0.21 0.06 0.23  0.14 0.15 0.16  0.20 0.15 0.27
Annual 0.26 0.07 0.29  0.16 0.17 0.14  0.21 0.17 0.29
 
Quarterly and Semiannual 1 alphas are estimated from daily returns, Semiannual 2 alphas are estimated from weekly 
returns, and Annual alphas are estimated from monthly returns. 
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4.2. Conditional betas 

 Table 3 provides direct evidence against the conditional CAPM:  conditional alphas are large and 

significant.  An alternative approach is to ask whether betas vary over time in a way that might explain 

portfolios’ unconditional alphas via the mechanisms discussed in Section 2:  do betas covary strongly 

with the market risk premium or volatility?  The fact that our estimates of conditional and unconditional 

alphas are similar tells us the answer must be no, but it’s useful to look at time-variation in betas to get 

additional perspective for what’s driving the results.  These tests reinforce our conclusion that betas don’t 

vary enough to redeem the conditional CAPM. 

 Table 4 reports summary statistics for conditional betas.  Average betas, in panel A, are generally 

close to our earlier estimates of unconditional betas.  Focusing on the semiannual estimates from weekly 

returns (Semiannual 2), S-B has an average conditional beta of 0.32 (vs. an unconditional weekly beta of 

0.39), V-G has an average beta of –0.19 (vs. an unconditional beta of –0.24), and W-L has an average 

beta of –0.14 (vs. an unconditional beta of –0.17). 

 Panels C and D indicate that betas fluctuate significantly over time.  In Panel C, the standard 

deviation of estimated betas is often greater than 0.30 and sometimes higher than 0.40 (for momentum 

portfolios).  Part of the variability is due to sampling error, so we focus more on the implied variability of 

true betas.  Specifically, we can think of the estimated betas as bt = βt + et, where βt is the true conditional 

beta and et is sampling error.  As long as beta is stable during the estimation window and the regression 

satisfies standard OLS assumptions, bt is an unbiased estimate of βt, implying that βt and et are 

uncorrelated and that var(bt) = var(βt) + var(et).  We use this equation to back out the volatility of true 

betas, where var(et) is the average sampling variance of bt – βt from the short-window regressions (see 

Fama and French, 1997). 

As shown in Panel D, the volatility of betas remains substantial even after removing sampling 

error.  Focusing on the long-short strategies, S-B’s beta has a standard deviation around 0.30, V-G’s beta 

has a standard deviation around 0.25, and W-L’s beta has a standard deviation around 0.60.  The  
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 Table 4 
Time-variation in betas, 1964 – 2001 

The table reports summary statistics for the conditional betas of size, B/M, and momentum portfolios.  Betas are 
estimated quarterly using daily returns, semiannually using daily and weekly returns, and annually using monthly 
returns, correcting for nonsynchronous trading as described in the text.  Panels A and C report the time-series mean 
and standard deviation of beta, Panel B reports the average standard error of beta from the short-window 
regressions, and Panel D reports the implied time-series standard deviation of true betas. 

The portfolios are formed from all NYSE and Amex stocks on CRSP / Compustat.  We begin with 25 size-B/M 
portfolios (5×5 sort, breakpoints determined by NYSE quintiles) and 10 return-sorted portfolios, all value weighted. 
‘Small’ is the average of the five low-market-cap portfolios, ‘Big’ is the average of the five high-market-cap 
portfolios, and ‘S-B’ is their difference.  Similarly, ‘Growth’ is the average of the five low-B/M portfolios, ‘Value’ 
is the average of the five high-B/M portfolios, and ‘V-G’ is their difference.  The return-sorted portfolios are formed 
based on past 6-month returns.  ‘Losers’ is the bottom decile, ‘Winners’ is the top decile, and ‘W-L’ is their 
difference. 

 Size  B/M  Momentum 

 Small Big S-B Grwth Value V-G Losers Winrs W-L

Panel A: Average betas 
Quarterly a 1.03 0.93 0.10 1.17 0.98 -0.19 1.19 1.24 0.05
Semiannual 1 1.07 0.93 0.14 1.19 0.99 -0.20 1.20 1.24 0.05
Semiannual 2 1.23 0.91 0.32 1.25 1.06 -0.19 1.33 1.19 -0.14
Annual 1.49 0.83 0.66 1.36 1.17 -0.19 1.38 1.24 -0.14
    
Panel B: Average std error 

b 

Quarterly 0.13 0.06 0.17 0.10 0.10 0.12 0.17 0.14 0.24
Semiannual 1 0.09 0.04 0.12 0.07 0.07 0.08 0.12 0.09 0.17
Semiannual 2 0.16 0.07 0.20 0.11 0.12 0.14 0.20 0.15 0.29
Annual 0.36 0.13 0.42 0.22 0.24 0.30 0.40 0.28 0.57
    
Panel C: Std deviation of estimated betas 
Quarterly 0.35 0.15 0.38 0.22 0.30 0.28 0.41 0.37 0.68
Semiannual 1 0.31 0.13 0.32 0.19 0.29 0.25 0.33 0.32 0.58
Semiannual 2 0.35 0.13 0.38 0.20 0.33 0.33 0.44 0.36 0.71
Annual 0.54 0.14 0.56 0.27 0.46 0.41 0.52 0.44 0.83
    
Panel D: Implied std deviation of true betas 

c 

Quarterly 0.32 0.13 0.33  0.19 0.28 0.25  0.36 0.33 0.63
Semiannual 1 0.29 0.12 0.30  0.18 0.28 0.24  0.30 0.30 0.55
Semiannual 2 0.31 0.10 0.32  0.16 0.31 0.29  0.36 0.32 0.62
Annual 0.35 -- 0.25  0.04 0.37 0.19  0.19 0.29 0.52

 
a Quarterly and Semiannual 1 betas are estimated from daily returns, Semiannual 2 betas are estimated from weekly 
returns, and Annual betas are estimated from monthly returns. 
b Average standard error from the short-window regressions, not the standard error of the average. 

c The implied variance of true betas equals var(bt) – var (et), the difference between the variance of estimated betas and the 
average variance of the sampling error in bt (from the regressions).  The standard deviation is undefined for Big using 
annual windows / monthly returns because the implied variance is negative. 
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Figure 2 
Conditional betas, 1964 – 2001 
The figure plots conditional betas for size, B/M, and momentum portfolios.  The dark line is the point estimate and 
the light lines indicate a two-standard-deviation confidence interval.  Betas are estimated semiannually (non-
overlapping windows) using daily returns.  The portfolios are formed from all NYSE and Amex stocks on CRSP / 
Compustat.  We begin with 25 size-B/M portfolios (5×5 sort, breakpoints determined by NYSE quintiles) and 10 
return-sorted portfolios, all value weighted. ‘S–B’ is the average return on the five low-market-cap portfolios 
(Small) minus the average return on the five high-market-cap portfolios (Big).  ‘V–G’ is the average return on the 
five high-B/M portfolios (Value) minus the average return on the five low-B/M portfolios (Growth).  Return-sorted 
portfolios are formed based on past 6-month returns.  ‘W–L’ is the return on the top decile (Winners) minus the 
return on the bottom decile (Losers). 
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magnitude of these standard deviations can be seen most easily in Figure 2.  In particular, S-B’s beta 

varies from a high of 1.02 (t-stat = 7.22) in 1966 to a low of –0.64 (t-stat = –5.51) in 1989.  V-G’s beta 

reaches a maximum of 0.54 (t-stat = 5.13) in 1976 before falling to a minimum of –0.99 (t-stat = –11.39) 

just six years later.  The momentum strategy’s beta is the most volatile, which is not surprising given that 

the strategy almost certainly has the highest turnover.  In Figure 2, W-L’s beta varies from a high of 2.25 

(t-stat = 8.98) to a low of –1.51 (t-stat = –4.47). 

 

Beta and the market risk premium 

Section 2 showed that, if the conditional CAPM holds and beta covaries with the risk premium γt, a 

portfolio’s unconditional alpha is approximately αu ≈ cov(βt, γt) = ρ σβ σγ.  At the time, we considered 

values of σβ ranging from 0.3 to 0.7 to illustrate that implied alphas are relatively small for ‘plausible’ 

parameters (see Table 1).  This range seems reasonable given the results in Table 4. 

We can also estimate cov(βt, γt) directly from the data.  As a first step, Table 5 explores the 

correlation between betas and several state variables that have been found to capture variation in the 

equity premium.  The state variables are lagged relative to beta (i.e., known prior to the beta estimation 

window), so the correlations are predictive.  RM,-6 is the past 6-month return on the market portfolio; 

TBILL is the one-month Tbill rate; DY is the 12-month rolling dividend-to-price ratio on the value-

weighted NYSE index; TERM is the yield spread between 10-year and 1-year Tbonds; and CAY is the 

consumption-to-wealth ratio of Lettau and Ludvigson (2001).  The portfolios’ lagged betas, denoted βt-1, 

are also included to test for persistence.  Table 5 focuses on betas estimated semi-annually using daily 

returns, the same as those used in Figure 2. 

Panel A reports the correlation between betas and the state variables.  The first row shows that 

betas are persistent but that autocorrelations are far from one, with estimates between 0.45 and 0.68 for  
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 Table 5 
Predicting conditional betas, 1964 – 2001 

The table reports the correlation between various state variables and the conditional betas of size, B/M, and 
momentum portfolios.  Betas are estimated semiannually using daily returns.  The state variables are lagged relative 
to the beta estimates.  βt-1 is the portfolio’s lagged beta; RM,-6 is the past 6-month market return; TBILL is the one-
month Tbill rate; DY is the log dividend yield on the value-weighted NYSE index; TERM is the yield spread 
between 10-year and 1-year Tbonds; CAY is the consumption to wealth ratio of Lettau and Ludvigson (2001). 
Panel A reports simple correlations between estimated conditional betas and the state variables, and Panel B reports 
slope estimates when betas are regressed on all of the state variables together. 

The portfolios are formed from all NYSE and Amex stocks on CRSP / Compustat.  We begin with 25 size-B/M 
portfolios (5×5 sort, breakpoints determined by NYSE quintiles) and 10 return-sorted portfolios, all value weighted. 
‘Small’ is the average of the five low-market-cap portfolios, ‘Big’ is the average of the five high-market-cap 
portfolios, and ‘S-B’ is their difference.  Similarly, ‘Growth’ is the average of the five low-B/M portfolios, ‘Value’ 
is the average of the five high-B/M portfolios, and ‘V-G’ is their difference.  The return-sorted portfolios are formed 
based on past 6-month returns.  ‘Losers’ is the bottom decile, ‘Winners’ is the top decile, and ‘W-L’ is their 
difference. 

 Size  B/M  Momentum 
 Small Big S-B Grwth Value V-G Losers Winrs W-L

Panel A: Correlation between betas and state variables 

βt-1 0.55 0.68 0.43  0.58 0.67 0.51  0.30 0.45 0.37
RM,-6 -0.05 -0.01 -0.05 -0.18 0.00 0.14 -0.53 0.47 0.56
TBILL -0.04 0.11 -0.08 0.15 -0.12 -0.25 0.14 -0.25 -0.21
DY 0.22 0.64 -0.04 0.37 0.40 0.18 0.13 -0.12 -0.14
TERM -0.20 0.19 -0.27 -0.12 0.01 0.10 -0.01 -0.08 -0.04
CAY -0.12 0.50 -0.31 -0.01 0.17 0.20 0.09 -0.09 -0.10
     
Panel B: Betas regressed on the state variables 

a 

Slope estimate 
βt-1 0.12 0.05 0.11 0.10 0.12 0.08 0.10 0.15 0.22
RM,-6 0.05 -0.01 0.04 0.02 0.04 0.04 -0.19 0.20 0.39
TBILL -0.13 -0.02 -0.11 -0.03 -0.14 -0.13 0.09 -0.14 -0.24
DY 0.14 0.05 0.09 0.06 0.16 0.10 -0.07 0.11 0.19
TERM -0.10 0.00 -0.10 -0.02 -0.08 -0.07 0.07 -0.11 -0.19
CAY -0.05 0.02 -0.08 -0.03 -0.01 0.03 0.00 -0.01 -0.01

t-statistic 
βt-1 3.53 3.99 2.83 4.24 3.88 2.62 3.03 5.31 4.49
RM,-6 1.52 -0.45 1.17 0.73 1.58 1.41 -5.63 7.25 7.63
TBILL -2.56 -1.39 -2.09 -1.06 -3.19 -2.98 1.79 -3.41 -3.22
DY 2.82 3.05 1.74 2.10 3.64 2.65 -1.50 2.87 2.65
TERM -2.40 -0.25 -2.21 -0.81 -2.40 -1.99 1.60 -3.07 -2.81
CAY -1.32 1.86 -1.81 -1.34 -0.17 0.98 0.07 -0.22 -0.13
      
Adj R2 0.37 0.60 0.26  0.34 0.52 0.32  0.35 0.56 0.53
 
a The state variables – including lagged beta – are scaled by their standard deviations.  The slopes can be interpreted as the 
predicted change in beta associated with a one-standard-deviation change in the state variable.  Bold denotes estimates 
greater than 1.96 standard errors from zero. 
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most of the raw portfolios and a bit lower, 0.37 to 0.51, for the long-short strategies.5  Momentum betas 

are both the least persistent and the most highly correlated with past market returns.  Winner betas 

increase (correlation of 0.47) and Loser betas decrease (correlation of –0.53) after the market does well.  

This pattern is intuitive:  we expect the Winner portfolio to become weighted towards high-beta stocks 

when the market goes up since those stocks do best (Ball, Kothari, and Shanken, 1995; Grundy and 

Martin, 2001).  Panel A also shows that Value betas are positively correlated with CAY.  Hence, our 

short-window regressions capture the same variation in Value betas found by Lettau and Ludvigson 

(2001) (though our pricing conclusions differ substantially). 

Panel B studies the joint explanatory power of the state variables.  For this panel, the state variables 

are scaled by their standard deviations, so the regression slopes can be interpreted as the change in beta 

predicted by a one-standard-deviation change in the state variables.  The slopes indicate that betas vary 

significantly with TBILL, DY, and TERM.  Small, Value, and Winner stocks have high betas when 

TBILL and TERM are low (slopes of –0.08 to –0.14) and when DY is high (slopes of 0.11 to 0.14).  The 

effect of RM,-6 on momentum betas is also quite strong, with a slope of 0.39 for the Winner minus Loser 

portfolio.  CAY, the consumption-to-wealth ratio of Lettau and Ludvigson (2001), shows little relation to 

betas once we control for the other variables.  In sum, betas fluctuate with state variables that have been 

found to capture variation in the equity premium. 

With that prelude, we estimate cov(βt, γt) in two ways.  Our first estimate is simply cov(bt, RMt), 

where we have replaced the true conditional beta with our estimate bt and replaced the risk premium with 

the realized market return RMt.  The logic here is that, under the assumptions of OLS, sampling error in 

beta should be uncorrelated with market returns, so the covariance between bt and RMt provides an 

unbiased estimate of cov(βt, γt): 

 cov(bt, RMt) = cov(βt, RMt) = cov(βt, γt), (10) 

                                                      
5 The standard error of the estimates is roughly 1/ T  = 0.12 under the null that the autocorrelations are zero.  

Also, true betas should be more highly autocorrelated than estimated betas:  sampling error in beta, if serially 
uncorrelated, would attenuate the autocorrelations by var(βt) / var(bt).  The statistics in Panels C and D of Table 4 
suggest that the attenuation bias is small for our data. 
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where the last equality uses the fact that unexpected market returns must be uncorrelated with βt.  Eq. (10) 

is necessarily true if returns are conditionally normal, but it may not hold for alternative distributions.  

Empirically, Ang and Chen (2002) show that stocks covary more strongly in down markets, suggesting 

that et and st might be correlated for some firms.  Therefore, we report this first estimate primarily as a 

benchmark rather than as a perfect estimate of cov(βt, γt). 

 Table 6, Panel A, shows the results.  The numbers can be interpreted as the unconditional monthly 

alpha (in %) that we should observe if the conditional CAPM holds, i.e., αu ≈ cov(βt, γt).  Like our earlier 

tests, the results provide no evidence that time-varying betas salvage the CAPM:  the implied alphas are 

either close to zero or have the wrong sign.  The covariance estimates for S-B and W-L betas are 

generally negative (between –0.04% and –0.39% for quarterly and semiannual betas), while the 

covariance estimates for V-G are small and positive (between 0.04% and 0.11%).  Thus, conditional betas 

do not seem to covary with the risk premium in a way that can explain the unconditional alphas observed 

for B/M and momentum portfolios. 

 Our second estimate uses the predictive regressions from Table 5.  In particular, the estimator is 

given by cov( *
tb , RMt), where *

tb  is the fitted value from the regression of bt on the state variables and its 

own lag.  Because the predictor variables are known at the beginning of the period, it must be the case 

that cov( *
tb , RMt) = cov( *

tb , γt).  The estimator will equal cov(βt, γt) if the error in bt
∗ is uncorrelated with 

the market risk premium, i.e., if cov(γt, βt – bt
∗) = 0.  This requires that the state variables do a good job 

capturing either time-variation in the risk premium or time-variation in betas (one is necessary, not both).  

The variables do capture a significant fraction of movements in betas – the regression R2s in Table 5 

range from 0.26 to 0.60 – but there clearly remains a large component unexplained.  Thus, we again 

interpret the results with caution, although we have no particular reason to believe that the unexplained 

component of beta is correlated one way or another with γt. 

The estimates, in Panel B, typically have the same sign as those in Panel A but are closer to zero.  

S-B’s and W-L’s betas still covary negatively with market returns, but only the size strategy’s covariance 
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is now significant.  V-G’s betas continue to show little relation to market returns, with estimates between 

0.00% and 0.03% (standard errors of 0.04%). 

In short, covariation between beta and the risk premium does not explain the unconditional alphas 

observed for B/M and momentum portfolios.  Using the estimates in Panel B, the conditional CAPM 

predicts that V-G should have an unconditional alpha of 0.00% to 0.03%, a tiny fraction of the actual 

Table 6 
Conditional betas and the market risk premium, 1964 – 2001 
The table reports the covariance between market returns and the conditional betas on size, B/M, and momentum portfolios. 
Betas are estimated quarterly using daily returns (Qtr), semiannually using daily and weekly returns (Semi 1 and Semi 2), 
and annually using monthly returns (Annual).  The market portfolio is the CRSP value-weighted index.  Excess returns on 
the index are measured over the same window as betas (e.g., quarterly betas covary with quarterly returns), but the 
numbers are all expressed in percent monthly (e.g., the quarterly covariance is divided by 3).  Panel A reports the market’s 
covariance with contemporaneously estimated betas and Panel B reports the market’s covariance with predicted betas, 
taken from the regression of estimated betas on lagged state variables (see Table 4).  The size, B/M, and momentum 
portfolios are formed using all NYSE and Amex stocks on CRSP/Compustat. 

  Size  B/M  Momentum 
  Small Big S-B Grwth Value V-G Losers Winrs W-L

Panel A: Covariance between estimated betas and market returns (% monthly) 

Est. Qtr -0.32 0.07 -0.39  -0.20 -0.12 0.09  0.16 -0.23 -0.38
 Semi 1 -0.17 0.07 -0.24 -0.14 -0.03 0.11 -0.03 -0.07 -0.04
 Semi 2 -0.12 0.07 -0.19 -0.10 -0.03 0.07 0.15 -0.18 -0.33
 Annual 0.06 0.03 0.03 -0.03 0.01 0.04 -0.08 0.11 0.20
     
Std err.a Qtr 0.08 0.03 0.08 0.05 0.07 0.06 0.09 0.08 0.16
 Semi 1 0.07 0.03 0.07 0.04 0.07 0.06 0.08 0.07 0.13
 Semi 2 0.08 0.03 0.08 0.04 0.08 0.07 0.10 0.08 0.15
 Annual 0.12 0.03 0.13 0.06 0.10 0.09 0.12 0.10 0.19
      
Panel B: Covariance between predicted betas and market returns (% monthly) 

Est. Qtr -0.06 0.04 -0.09 -0.01 -0.02 0.02 0.06 -0.05 -0.12
 Semi 1 -0.07 0.03 -0.10 -0.02 -0.02 0.01 0.05 -0.07 -0.12
 Semi 2 -0.04 0.02 -0.05 0.00 -0.01 0.00 0.07 -0.08 -0.14
 Annual 0.03 0.01 0.02 0.00 0.01 0.03 0.05 -0.03 -0.08
    
Std err.a Qtr 0.04 0.02 0.04 0.03 0.05 0.04 0.05 0.06 0.10
 Semi 1 0.05 0.02 0.04 0.03 0.05 0.04 0.05 0.06 0.10
 Semi 2 0.04 0.02 0.03 0.02 0.05 0.04 0.06 0.05 0.10
 Annual 0.05 0.02 0.05  0.03 0.06 0.04  0.06 0.05 0.09
 
a Standard errors are obtained by regressing market returns on the estimated or predicted betas, scaling the 
independent variable so that the slope equals a simple covariance.  These standard errors implicitly condition on the 
sample variance of the betas. 
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alpha, 0.59% (see Table 2).  W-L should have an alpha of –0.08% to –0.12%, small and opposite in sign 

to the actual alpha, 1.03%.  The results are consistent with our direct evidence that conditional alphas are 

large and significant, contrary to the conditional CAPM. 

 
Beta and market volatility 

Section 2 showed that unconditional alphas depend not only on the covariance between beta and 

the risk premium, but also on the covariance between beta and market volatility: 

 αu ≈ ),cov(),cov( 2
tt2

M
tt σβ

σ
γ

−γβ , (11) 

where the last term captures the impact of time-varying volatility.  In untabulated results, we find that the 

volatility effect is economically quite small.  To estimate ),cov( 2
tt σβ , we calculate conditional market 

volatility much like we do betas, using daily, weekly or monthly returns over short windows.  [We adjust 

for autocorrelation using the approach of French, Schwert, and Stambaugh (1987).]  We then estimate the 

covariance between market volatility and both estimated and predicted betas, similar to Table 6.  The 

estimates of ),cov( 2
tt σβ  are between -0.02% and 0.02% for every portfolio (std. errors of 0.01 – 0.02), 

and, multiplying by γ / 2
Mσ  = (0.0047 / 0.0452) = 2.32, the implied impact on unconditional alphas is at 

most +/−0.05% monthly.  Thus, accounting for time-varying market volatility does little to improve the 

performance of the conditional CAPM. 

 

5. Comparison with other studies 

 Our empirical results, and generally skeptical view of conditioning, are opposite to the conclusions 

of Jagannathan and Wang (1996), Lettau and Ludvigson (2001), Santos and Veronesi (2005), and Lustig 

and Van Nieuwerburgh (2005).  They argue that conditioning dramatically improves the performance of 

both the simple and consumption CAPMs.  The studies have been influential, so it seems worthwhile to 

offer a few observations on why their conclusions are different. 



 28

 The four papers differ from ours in many ways, but a key distinction is that they focus on cross-

sectional regressions, not time-series intercept tests, and ignore important restrictions on the cross-

sectional slopes.  As such, the papers test only the qualitative implications of the conditional CAPM, that 

the effects of time-varying betas are cross-sectionally correlated with expected returns.  They do not 

provide a full, quantitative test of the conditional CAPM. 

 This point can be seen most easily in the context of the simple CAPM.  A full test is whether 

expected returns are cross-sectionally linear in conditional betas, Et-1[Rit] = βit γt, with a slope equal to the 

equity premium.  However, following Jagannathan and Wang (1996), the papers instead focus on the 

unconditional relation E[Rit] = βi γ + cov(βit, γt), estimating this cross-sectional regression using various 

measures of βi and cov(βit, γt).  In this regression, the slope on βi should equal γ and the slope on cov(βit, 

γt) should equal one but the papers treat the slopes as free parameters.  We believe this explains why they 

find conditioning to be so important – in particular, the estimated slopes on cov(βt, γt) appear to be much 

too large (as we illustrate in a moment). 

 To be fair, the papers don’t estimate the cross-sectional regression, E[Rit] = βi γ + cov(βit, γt), 

directly but, rather, consider transformations of it that obscure the restrictions implied by the conditional 

CAPM.  For example, Jagannathan and Wang (1996) show that, under some assumptions, the terms βi 

and cov(βit, γt) can be replaced by stocks’ unconditional betas and their so-called ‘premium betas,’ βγ ≡ 

cov(Rt, γt) / var(γt).  The other papers use βi and a second loading δi that is proportional, under their 

assumptions, to cov(βit, γt).  These substitutions make it more difficult to see exactly how their estimates 

violate the restrictions implied by the conditional CAPM.  As an illustration, we offer here a detailed 

example from Lettau and Ludvigson (LL 2001). 

 LL’s main conclusions concern the performance of the consumption CAPM.  The ‘CCAPM’ 

implies that Et-1[Rit] = βit γt, where, in an abuse of notation, βit is now an asset’s consumption beta and γt is 

the consumption-beta risk premium (in the standard model, γt ≈ φ σc
2, where φ is aggregate relative risk 

aversion and σc
2 is the variance of consumption growth).  Taking unconditional expectations, E[Rit] = βi γ 
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+ cov(βit, γt), just as in the simple CAPM.  To implement this empirically, LL estimate how stocks’ 

consumption betas fluctuate with the consumption-to-wealth ratio CAY:  βit = βi + δi CAYt [βi and δi are 

estimated in the first-pass regression Rit = αi0 + αi1 CAYt + βi Δct + δi CAYt Δct + et, as LL explain on p. 

1266].  Substituting βit into the unconditional relation above gives 

 E[Rit] = βi γ + δi cov(CAYt, γt). (12) 

Thus, in LL’s context, the conditional CCAPM implies that the slope on βi should be the average 

consumption-beta risk premium and the slope on δi should be cov(CAYt, γt).  In principle, the second 

restriction could be tested and, we believe, would almost certainly be rejected.  Here we simply note that 

the estimated slope seems huge.  In LL’s Table 3, the slope on δi is around 0.06% or 0.07% quarterly.  

Interpreting this slope as an estimate of cov(CAYt, γt) and using the fact the covariance must be less than 

σγ σcay, LL’s estimate implies that σγ > 3.2% quarterly (that is, if the slope is less than σγ σcay, then σγ > 

slope / σcay = 0.0006 / 0.019).  In contrast, LL estimate that the average risk premium is close to zero, 

between –0.02% and 0.22% quarterly.  Thus, if the conditional CCAPM truly explains their results, the 

risk premium must be close to zero on average yet have enormous volatility (and, since γt must be 

positive, it must also have enormous skewness).  These facts are difficult to reconcile – quantitatively – 

with the consumption CAPM.6 

On a related note, the cross-sectional R2s reported by all four papers should be interpreted with 

caution.  The papers find a dramatic increase in R2 for their conditional models, nicely illustrated by their 

figures showing predicted returns plotted on actual returns.  But these R2s aren’t very informative.  First, 

as discussed above, the papers ignore key restrictions on the cross-sectional slopes; the R2s would likely 

drop significantly if the restrictions were imposed.  Second, the papers all use returns on size–B/M 

portfolios that have two key features:  the returns can be traced to three common factors (Fama-French 

                                                      
6 Campbell and Cochrane (1999) provide a convenient benchmark.  In their model, γt ≈ φ σc

2 (1 + λt), where λt is 
the ‘sensitivity function’ that defines how the surplus consumption ratio responds to consumption.  Calibrations in 
their paper assume that φ = 2, σc = 0.75% quarterly, and generate λt with a mean of 15 and a standard deviation of 
7.5 (roughly).  Substituting into γt, these parameters imply that σγ ≈ 0.10% quarterly, more than an order of 
magnitude smaller than the estimate implied by LL’s regressions. 
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time-series R2s above 90%) and betas on the factors explain most of the cross-sectional variation in 

expected returns.  In this setting, it can be easy to find a high sample R2 even when the population R2 is 

zero.  For example, we have simulated the two-pass regressions of Lettau and Ludvigson (2001, Table 3) 

using historical returns and consumption but substituting a randomly generated, normal and IID, state 

variable in place of CAY.  In 10,000 simulations, the median R2 is 0.43 and the 5th and 95th percentiles 

are 0.12 and 0.72, respectively (compared with a reported 0.66).  These results suggest that, despite its 

increasing use, the cross–sectional R2 isn’t very meaningful (Lewellen, Nagel, and Shanken, 2006, 

explore this point more fully; see, also, Roll and Ross, 1994; Kandel and Stambaugh, 1995). 

 

6. Conclusion 

The main point of the paper is easily summarized:  the conditional CAPM does not explain asset-

pricing anomalies like B/M or momentum.  Analytically, if the conditional CAPM holds, deviations from 

the unconditional CAPM depend on the covariances among betas, the market risk premium, and market 

volatility.  We argue that, for plausible parameters, the covariances are simply too small to explain large 

unconditional pricing errors. 

The empirical tests support this view.  We use short-window regressions to directly estimate condi-

tional alphas and betas for size, B/M, and momentum portfolios from 1964 – 2001.  This methodology 

gets around the problem, common to all prior tests, that the econometrician cannot observe investors’ 

information sets.  We find that betas vary considerably over time, with relatively high-frequency changes 

from year to year, but not enough to generate significant unconditional pricing errors.  Indeed, there is 

little evidence that betas covary with the market risk premium in a way that might explain the alphas of 

B/M and momentum portfolios.  Most important, conditional alphas are large and significant, in direct 

violation of the conditional CAPM. 
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Appendix A 

This appendix derives eq. (2), the expression for a stock’s unconditional beta.  Let Rit be the excess 

return on asset i, RMt be the excess return on the market portfolio, and βt be the stock’s conditional beta 

for period t (given information at t–1).  Also, let βt = β + ηt, where β = E[βt] and ηt is the zero-mean, 

time-varying component.  According to the conditional CAPM, Rit = βt RMt + εt, so the unconditional 

covariance between Rit and RMt equals: 

cov(Rit, RMt) = cov[(β + ηt) RMt, RMt] 

 = β 2
Mσ  + E[ηt

2
MtR ] – E[ηt RMt] E[RMt]. (A.1) 

Recall that E[ηt] = 0, Et-1[RMt] = γt, Et-1[ 2
MtR ] = γt

2 + 2
tσ , and E[RMt] = γ.  Therefore, the second term 

equals cov(ηt, γt
2 + 2

tσ ) and the last term equals γ cov(ηt, γt).  Substituting into (A.1) yields 

 cov(Rit, RMt) = β 2
Mσ  + cov(ηt, 2

tσ ) + cov(ηt, γt
2) – γ cov(ηt, γt). (A.2) 

Finally, write γt = γ + (γt – γ) and substitute into the second-to-last term of (A.2).  Simplifying yields: 

 cov(Rit, RMt) = β 2
Mσ  + cov(ηt, 2

tσ ) + γ cov(ηt, γt) + cov[ηt, (γt – γ)2]. (A.3) 

Since βt = β + ηt, we can simply replace ηt with βt throughout this expression.  The unconditional beta 

can then found by dividing both sides by the market’s unconditional variance.  The result, identical to eq. 

(2) in the text, is a general formula for the unconditional beta when expected returns, variances, and 

covariances all change over time and the conditional CAPM holds. 

 

Appendix B 

This appendix explores how high frequency changes in beta affect our short-window regressions.  

In principle, we expect the impact of, say, daily changes in beta on quarterly regressions to be similar to 

the effects discussed in Section 2 except that now only intraquarter variation in betas and expected returns 

(around their quarterly means) should be important.  We use simulations to explore the effects formally, 

focusing on the case of constant volatility. 
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The simulations match many properties of the data but the parameters are guided in part by theory.  

We assume that both beta and the market risk premium follow weekly AR(1) processes: 

γt = φ γt-1 + ξt, where ξt ~ N[0, σξ
2], (A.4) 

 βt = κ βt-1 + vt, where νt ~ N[0, σν
2]. (A.5) 

The (realized) return on the market portfolio is RMt = γt + st, with st ~ N[0, σs
2], and the return on the stock 

is Rt = βt RMt + εt, with εt ~ N[0, σε
2].  In addition, the simulations capture two potentially important 

features of the data:  (i) shocks to the risk premium are allowed to covary negatively with market returns 

(prices drop if the risk premium goes up); and (ii) shocks to betas are allowed to covary negatively with 

the stock’s returns (prices drop if risk goes up). 

 Specifically, we simulate weekly returns under several assumptions:  (i) the correlation between 

betas and the risk premium is either 0.0 or 0.8; (ii) the correlation between shocks to the risk premium and 

shocks to realized market returns is 0.0, –0.4, or –0.8; and (iii) the correlation between idiosyncratic 

shocks to beta (the component that isn’t correlated with the risk premium) and idiosyncratic stock returns 

is either 0.0 or –0.5.  These parameters are chosen to cover a wide range of empirically-plausible values.  

In addition, all simulations assume that βt and γt both have monthly autocorrelations of 0.98, βt has a 

mean of 1.0 and volatility of 0.5, γt has a mean of 0.5% and volatility of 1.5% monthly, the market’s 

conditional volatility is 4.5% monthly, and the asset’s idiosyncratic volatility is 5%.  We simulate returns 

with extreme variation in betas and the risk premium in order to generate unconditional alphas that are in 

line with their empirical values. 

 The simulation results are reported in Table A.1 (based on 50,000 quarters of weekly returns).  

True conditional alphas are zero in the simulations, since the CAPM holds in weekly returns.  The top 

panel shows simulations in which βt and γt are uncorrelated, so unconditional alphas are also zero, while 

the bottom panel shows simulations in which cor(βt, γt) = 0.8, so unconditional alphas are roughly αu ≈ 

cov(βt, γt) = 0.60.  The simulations confirm that unconditional alphas estimated using either weekly or 

monthly returns produce alphas close to the theoretical value.  The fact that weekly and monthly alphas 
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are nearly identical suggests that the horizon over which the CAPM is assumed to hold isn’t very 

important – if it holds at one frequency, it should hold nearly perfectly at others that aren’t too different, 

absent the microstructure issues discussed in Section 3. 

 More important, the simulations show that our short-window regressions (quarterly using weekly 

returns) produce conditional alphas that are close to zero, even though betas and the risk premium vary 

wildly over time.  For the six scenarios in the top panel, in which beta and the risk premium are 

uncorrelated, the short-window alphas are almost exactly zero.  For the six scenarios in the bottom panel, 

in which αu ≈ 0.60% monthly, the short-window alphas are between 0.01% and 0.13% monthly – that is, 

our short-window regressions capture 80–99% of the pricing impact of time-varying betas.  The short-

window regressions work almost perfectly as long as market returns are not too highly correlated with 

Table A.1 
The impact of high frequency variation in beta on CAPM regressions 
The table reports unconditional and average short-window regressions from simulations in which beta and the risk 
premium vary weekly.  The return generating process is described in the text.  The table shows results for 12 
scenarios that differ in three dimensions:  (i) the correlation between βt and γt is either 0.0 or 0.8; (ii) the correlation 
between idiosyncratic shocks to βt (the component that isn’t correlated with γt) and idiosyncratic stock returns is 
either 0.0 or –0.5 (labelled cor(β,ε) in the table); and (iii) the correlation between shocks to γt+1 and shocks to RMt is 
either 0.0, –0.4, or –0.8 (labelled cor(γ,RM) in the table).  The conditional CAPM holds in weekly returns but the 
table shows unconditional regressions using both weekly and monthly returns. 
 

Parameters  Unconditional regressions  Short-window regressions 

cor(β,γ) cor(β,ε) cor(γ,RM) u
weeklyα u

weeklyβ u
monthlyα u

monthlyβ αweekly β weekly cov(β,RM)

0 0 0 0.01 0.97 0.01 0.97 0.00 0.97 0.01
0 0 -0.4 0.01 0.97 0.01 0.97 -0.01 0.97 0.02
0 0 -0.8 0.01 0.97 0.01 0.97 -0.01 0.97 0.02
0 -0.5 0 0.02 0.97 0.02 0.97 0.01 0.97 0.01
0 -0.5 -0.4 0.02 0.97 0.03 0.97 0.01 0.97 0.02
0 -0.5 -0.8 0.03 0.97 0.02 0.97 0.00 0.97 0.02

0.8 0 0 0.62 0.99 0.61 1.00 0.01 0.98 0.61
0.8 0 -0.4 0.62 0.99 0.61 1.00 0.06 0.98 0.56
0.8 0 -0.8 0.61 0.99 0.61 1.00 0.11 0.99 0.50
0.8 -0.5 0 0.63 0.99 0.63 1.00 0.02 0.98 0.61
0.8 -0.5 -0.4 0.63 0.99 0.63 1.00 0.08 0.98 0.56
0.8 -0.5 -0.8 0.63 0.99 0.63 1.00 0.13 0.99 0.50

 
Alphas, in bold, are % monthly 
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shocks to the risk premium, but they deteriorate somewhat (though still work extremely well) as that 

correlation approaches –1.0.  The small deterioration seems to arise because the market return is also 

negatively correlated with shocks to beta; quarters in which beta goes down are quarters in which the 

market return is high, pushing the short-window alphas slightly positive.  In general, the simulations 

suggest that our short-window regressions do a very good job capturing the impact of time-varying betas 

even when betas vary at high frequency. 
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